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We study unbinding transitions of a nonequilibrium Kardar-Parisi-Zhang interface in the presence of long-
ranged substrates. Both attractive and repulsive substrates, as well as positive and negative Kardar-Parisi-
Zhang nonlinearities, are considered, leading to four different physical situations. A detailed comparison with
equilibrium wetting transitions as well as with nonequilibrium unbinding transitions in systems with short-
ranged forces is presented, yielding a comprehensive picture of unbinding transitions and of their classification
into universality classes. These nonequilibrium transitions may play a crucial role in the dynamics of the
wetting or growth of systems with intrinsic anisotropies.
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I. INTRODUCTION

Spatial constraints in systems where two �or more� bulk
phases coexist may lead to wetting transitions. This is the
case, for example, of confined fluids where one of two coex-
isting equilibrium phases �the liquid, say� is in contact with a
substrate with an interface separating it from the second
phase �the gas� at infinity. The liquid does not wet the sub-
strate if the thickness of the liquid film is finite �there is a
microscopic quantity of liquid�. On the other hand, the sub-
strate is wet if there is a macroscopically thick liquid film on
it. A wetting transition is said to occur when the substrate
changes from not being wet by the liquid to being wet. Typi-
cally, two types of wetting transitions can be considered: by
increasing the temperature at bulk coexistence one may find
either critical wetting or a discontinuous transition; by vary-
ing the chemical potential while the temperature is fixed
above the wetting transition temperature one finds a com-
plete wetting transition, at bulk coexistence. Under equilib-
rium conditions, a completely analogous transition �often
called drying� may occur when the substrate preferentially
adsorbs the gas phase �1�.

Effective interfacial potentials are useful coarse-grained
models that have played a key role in understanding a large
variety of equilibrium wetting problems �1,2�. These poten-
tials V�h� are functionals of the interfacial height �measured
from the substrate�, h�x�. In this framework, wetting transi-
tions are described as the unbinding of the �say, liquid-vapor�
interface from the substrate, with the effective binding po-
tential determined by the microscopic forces between the
constituents of the substrate and those of the bulk phases.
Typically, exponentials and power-law decaying potentials
V�h� have been considered for systems dominated by short-
ranged and long-ranged forces, respectively.

There exists a large amount of phenomena describable in
terms of equilibrium wetting, either under short-ranged or
under long-ranged interactions, while it has only recently
been recognized that nonequilibrium effects, such as
anisotropies in the interface growing rules, may play a cru-
cial role in describing some experimental situations. Within

this perspective, short-ranged nonequilibrium wetting has
been studied �3,4� and some interesting novel phenomenol-
ogy has been elucidated �see �5� for recent reviews�. In par-
ticular, liquid-crystals �6�, molecular-beam epitaxial systems,
such as GaAs �7�, or materials exhibiting Stranski-Krastanov
instabilities �8� appear to be good candidates to require a
nonequilibrium wetting description. However, some of these
systems, as well as many others not enumerated, might in-
clude effective long-ranged substrate-interface effects as also
occurs in the equilibrium case.

Our goal in this paper is to fill this gap by providing a
general and systematic theory of nonequilibrium wetting un-
der the presence of effective long-ranged interactions. First,
we briefly review the equilibrium situation to set up the the-
oretical framework and, afterwards, generalize it to embrace
nonequilibrium situations.

In equilibrium, two types of analytical approaches are
available: static studies based on the ensemble theory �1� and
dynamical, stochastic approaches that allow investigating re-
laxational aspects. The second approach is amenable to non-
equilibrium extensions and is the one we employ. Thus, con-
sider the simple Edwards-Wilkinson dynamics �9� subject to
a bounding force �i.e., the derivative of the bounding poten-
tial� �10�:

�th�x,t� = �2h + a −
�V�h�

�h
+ ���x,t� . �1�

This includes �i� the usual diffusion term, computed as minus
the derivative of a standard surface-tension term, �ii� the
driving force a, related to the chemical potential difference
between the two phases, �iii� the Gaussian white noise
��x , t�, and �iv� the bounding force, which may derive from
a short-ranged potential

V�h� =
b

p
e−ph +

c

q
e−qh �2�

or from a long-ranged one
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V�h� =
b

php +
c

qhq , �3�

where b, c�0, and p�q are parameters. This last form, Eq.
�3�, is known to be the correct functional form for systems
where the molecules interact through van der Waals forces
�11�.

By varying the chemical potential a, one controls the av-
erage interfacial distance from the wall: small for a�ac
�nonwet phase�, large for a�ac, and increasing steadily with
time for a�ac �wet phase�; i.e., the system exhibits an un-
binding transition at a=ac. The interface potentials V�h� are,
in all cases, harshly repulsive at small h to model the impen-
etrability of the substrate. The parameter b vanishes linearly
with the temperature, at the �mean-field� critical wetting tem-
perature, and represents the affinity or preference of the sub-
strate for one of the bulk phases �usually the liquid�. We
consider three distinct situations �see Fig. 1�.

�i� Repulsive potential: complete wetting. If b�0, the po-
tential describes the presence of a bounding substrate alone.
In this case, the broken symmetry induced by the substrate
leads to the divergence of the average position of the inter-
face, at coexistence, ac=0: i.e., the system undergoes a com-
plete wetting transition.

The latter is described by Eq. �1� with the potential taken
from Eq. �2�. Two different regimes depending on the value
of p have been reported: for p�2 mean-field scaling holds
and �h�� t1/�p+2�, while if p�2 fluctuations take over and the
velocity is controlled by the intrinsic roughness of a free
Edwards-Wilkinson, leading to a fluctuation-dominated re-
gime characterized by �h�� t1/4 �0, or logarithmic growth for
two-dimensional interfaces� �12�. These results are derived in
a formal way and extended in the Appendix.

�ii� Attractive potential: first-order unbinding. For b�0,
by contrast to the complete wetting case, the surface does not
promote the growth of the liquid phase and consequently
there is no wetting phase even at bulk coexistence, a=0.
V�h� exhibits a local minimum near the substrate, which
binds the interface in the presence of thermal fluctuations,
and the width of the wetting layer is finite �microscopic� at
a=0. We may, however, observe a first-order unbinding tran-

sition that occurs as a changes from positive �stable bulk
liquid� to negative �stable bulk gas� values.

�iii� Critical wetting. At a particular value of b=bc �bc
=0 in the mean field but more generally bc is small and
negative� critical wetting may be observed, with a character-
istic nontrivial phenomenology. This situation requires the
fine-tuning of two independent parameters �b=bw, a=ac�.
This critical transition is more difficult to treat theoretically
and less likely to be found in real systems and will not be
discussed in this paper.

The best way to extend equilibrium approaches to more
general, nonequilibrium, situations is to consider the simplest
and widely studied nonequilibrium extension of the
Edwards-Wilkinson equation—i.e., the Kardar-Parisi-Zhang
�KPZ� �9,13� interfacial dynamics �14�—in the presence of
effective bounding potentials, as the ones we have described
before. This strategy has been followed in a series of recent
papers for systems with short-ranged �attractive and purely
repulsive� potentials �5� and will be extended in the present
work to the case of long-ranged potentials. We will discuss
the phase diagrams for both purely repulsive and attractive
potentials, paying special attention to criticality and to the
comparison with equilibrium wetting and nonequilibrium
short-ranged unbinding. We will focus on one-dimensional
interfaces �separating two-dimensional bulk phases� and
mention briefly two-dimensional interfaces in the Conclu-
sions.

The paper is organized as follows. In Sec. II we introduce
the nonequilibrium unbinding model. In Sec. III, we review
known results for nonequilibrium short-ranged unbinding.
Section IV contains the main body of the paper, including
both analytical and numerical results for purely repulsive and
attractive potentials. Finally, the main conclusions are pre-
sented together with a discussion of our results.

II. NONEQUILIBRIUM LONG-RANGED UNBINDING:
THE MODEL

Our model consists of a KPZ nonequilibrium interface
�9,13� in the presence of a long-ranged, bounding potential,
Eq. �3�,

�th = �2h + ���h�2 + a +
b

hp+1 +
c

hq+1 + ���x,t� , �4�

where ��0 is the coefficient of the nonlinear KPZ term, the
only new ingredient added to the equilibrium wetting Lange-
vin equation �1�.

Note that in equilibrium the time-dependent probability
distribution P�h , t� is symmetric for the free interface, and
therefore it does not make any difference which side faces
the substrate. By contrast, under nonequilibrium conditions,
owing to the h→−h asymmetry of the KPZ equation, it de-
pends on the sign of � that the substrate probes either one tail
or the other of a KPZ probability distribution that is no
longer symmetric. Thus, for a given bounding potential two
different situations must be considered. Therefore, we will
investigate systems with positive and negative values of �
�without loss of generality we take �= ±1� and with both
attractive �b�0� and repulsive �b�0� potentials; i.e., we

FIG. 1. �Color online� Effective potentials as derived from Eq.
�3� in the pinned �a�0� and the depinned �a�0� phases and at
coexistence �a=0�. �a� Repulsive walls �b ,c�0� and �b� attractive
walls �b�0, c�0�.
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consider four distinct cases. The focus is mainly on one-
dimensional interfaces.

For analytical studies we employ simple power-counting
arguments to establish the relevance or irrelevance of the
new terms at the equilibrium renormalization-group fixed
points. These will be combined with heuristic and scaling
arguments to relate the emerging critical behavior to equilib-
rium wetting and short-ranged nonequilibrium unbinding.

For numerical studies, we consider one-dimensional dis-
cretizations of Eq. �4�. As direct integrations of KPZ-like
equations are known to be plagued with numerical instabili-
ties �15�, we resort to the exponential or Cole-Hopf transfor-
mation n=exp�±h�, which leads to well-behaved, numeri-
cally tractable, Langevin equations with multiplicative noise
�5,16�. In order to integrate these equations we employ a
recently proposed efficient numerical scheme �17�, specifi-
cally designed to deal with stochastic equations with nonad-
ditive noise. More than just a useful technical trick, this
transformation has an interesting physical motivation, as we
discuss next. For negative values of a−ac, the average inter-
facial height �h� �thickness of the liquid film� may be large
but finite, and the interface fluctuates around its average po-
sition occasionally touching the substrate. As the interface
moves to infinity when a→ac, its average height grows �i.e.,
the liquid film completely wets the substrate�, thereby sup-
pressing contact �dry� sites. An appropriate order-parameter
�OP� for the unbinding transition is the number of contact
�dry� sites �3,18� or, equivalently, the surface order parameter
�19�. This OP is finite and positive when the interface is
bound and vanishes at the unbinding transition. The variable
�n�= �exp�−h��, which vanishes exponentially far from the
wall, is an adequate mathematical representation of such an
OP �though not the only one�.

The main goal of our study is the description of the scal-
ing behavior of the OP. �n� is expected to obey simple scal-
ing near the critical point for sufficiently large times t and
large system sizes L. Denoting �a= 	a−ac	,

�n��a,t,L�� = L−	OP/
�n�L1/
�a,L−zt�� , �5�

while right at the transition �n��a=0, t��� t−	OP/
z� t−�OP and
therefore �n��a , t=�����a	OP, where the critical exponents
were introduced following standard nomenclature. Analo-
gously, for the interfacial height we can define �h���a−	h

and �h��a=0, t��� t	h/
z� t�h, although in terms of h a single
universality class, with exponents related to the free KPZ
�16�, is observed for both signs of �. Determining all of these
critical exponents by the aforementioned techniques will al-
low us to assign the emerging critical behavior to specific
universality classes, providing a comprehensive classifica-
tion of nonequilibrium unbinding transitions in the presence
of long-ranged forces.

Before proceeding to the presentation of our results, we
notice that it is expected that the behavior for short-ranged
interactions is recovered in the large-p limit of the long-
ranged ones. Next, a brief review of the former is provided.

III. BRIEF REVIEW OF NONEQUILIBRIUM
SHORT-RANGED UNBINDING

The KPZ equation with exponential bounding potentials
is

�th = �2h + ���h�2 + a + be−ph + ce−qh + �� , �6�

with q� p�0. The results for the four possible physical situ-
ations are the following.

A. Repulsive wall and ��0

If ��0 �we set �=−1�, the change of variables n
=exp�−h� transforms Eq. �6� �with c=0� into

�tn = �2n − an − bn1+p + n�� . �7�

This describes complete wetting transitions �along path 1 in
Fig. 2�a�� characterized by �see �5�� a dynamic exponent z
=3/2, identical to KPZ, 
=1/ �2z−2�=1, and nontrivial ex-
ponents 	OP and �OP, which were determined by simulations.
The exponents for h have been measured also, and the tran-
sition was shown to be in the multiplicative noise 1 �MN1�
universality class: 	OP�1.78, �OP�1.18, �h�0.33, and 	h
�1/2 in d=1 �5�.

B. Repulsive wall and ��0

As for the ��0 case, it is more convenient �20� to use the
transformation n=exp�+h�, leading to

�tn = �2n + an + bn1−p + n�� . �8�

This equation describes the transition along path 1 in Fig.
2�b�. Numerical estimates for the associated universality
class have been recently obtained from this �non-order-
parameter� Langevin equation �20�. By measuring the order
parameter m= �1/n� �which vanishes at the transition�, the
following set of exponents was obtained: �OP�0.22, 	OP
�0.32, different from MN1 and �h�0.33, 	h�0.5, z=3/2,
and 
=1, in line with the corresponding exponents of the
MN1 class �3,20,21�. This universality class is known as
multiplicative noise 2 �MN2�. A detailed discussion of the
differences between the MN2 and MN1 universality classes
may be found in �5�.

Note that, apart from the signs, the difference between
Eqs. �7� and �8� is in the leading power of n. It is possible,
however, to summarize these two Langevin equations in

FIG. 2. �Color online� Phase diagrams for ��0�a�, ��0�b�.
Paths labeled 1 correspond to nonequilibrium complete wetting
transitions; 2, critical or first-order unbinding transitions �not stud-
ied�; 3, first-order unbinding transitions; 4, unbinding transition in
the directed percolation universality class. For ��0 and b�bw

�attractive substrates�, two-phase coexistence is observed in the area
delimited by the two lines.

KARDAR-PARISI-ZHANG INTERFACES BOUNDED BY¼ PHYSICAL REVIEW E 74, 011121 �2006�

011121-3



�tn = �2n + an + bn� + n�� , �9�

with =� / 	�	 and �=1−p. Then �1 and �1 corre-
spond, respectively, to the MN1 and MN2 universality
classes. In the first case the leading power for large values of
n is the nonlinear term while this role is taken by the linear
term in the second case. The transition at the boundary
�=1 �p=0� is obviously discontinuous, as both terms are
linear and there is no saturating term.

In MN1 the order parameter is n, while in the MN2 case,
it is m=1/n. In both cases a is the control parameter.

C. Attractive wall and ��0

For attractive walls, b�0, a positive value of c is required
for stability, for any value of �. In systems with ��0 �see
Fig. 1�a��, a new phenomenology including a broad coexist-
ence region and a directed-percolation unbinding transition
emerges �3,5,22,23�. In the broad-coexistence region the sta-
tionary solution is either bound or unbound depending on the
initial conditions �4,5�. Such a region is delimited on the
right �where the bound phase loses stability� by a directed
percolation transition, where the scaling properties are con-
trolled by the effective dynamics of the particlelike interface-
surface contact points �i.e., points trapped in the potential
well�. Its leftmost border corresponds to the abrupt �discon-
tinuous� binding of initially unbound interfaces. Again we
refer the reader to �5� for a detailed discussion and to �23� for
a review of generic phase coexistence in nonequilibrium sys-
tems.

D. Attractive wall and ��0

For ��0 �see Fig. 1�b�� a first-order transition separates
bound from unbound phases �akin to the equilibrium discon-
tinuous transition for attractive walls�. No broad coexistence
region or directed percolation transition exists in this case.

IV. NONEQUILIBRIUM LONG-RANGED UNBINDING:
RESULTS

We are now set to discuss the long-ranged nonequilibrium
problem described by Eq. �4�. There is a singularity at h=0,
and thus only positive values of h are allowed �mimicking
the impenetrability of the substrate�. As before, if b�0, we
take c=0 for simplicity. Proceeding as in the short-ranged
nonequilibrium case, we perform the change of variables n
=exp�h�, with =� / 	�	, in Eq. �4�, obtaining

�tn = �2n + an + b
n

	 ln�n�	1+p + n�� , �10�

where a term +cn / 	 ln�n�	1+q has to be added when b�0.
As before, for positive � �=1�, the order parameter is m
=1/n, while for ��0 the order parameter is n itself. Note
also that as there is a singularity at n=1 �inherited from the
singularity at h=0 in Eq. �4��, for ��0, where n diverges at
the transition and the initial condition is fixed at n�x�
�1" x, while for ��0, where n vanishes at the transition,
0�n�x��1" x is taken. The deterministic one-site terms of

Eq. �10� may be written as minus the derivative of a potential
U�n�, which is depicted in Fig. 3.

It is instructive to compare this model with the two uni-
versality classes reported for nonequilibrium short-ranged
wetting—i.e., MN1 and MN2. In fact, it is expected that, in
the limit of sufficiently large p, the power-law force yields
the same dynamics as short-ranged �exponential� forces.
Thus, for ��0 and large p we anticipate MN1 behavior
while MN2 scaling should obtain when ��0, in the same
limit.

A. Analytic results

In an early work the KPZ nonlinearity was argued to be
irrelevant above the �mean-field� wetting temperature b=bw
=0 and an equilibrium �complete� wetting transition was pre-
dicted to occur as a→ac, at constant b�bw, for any � �24�
�transitions along path 1 in Fig. 2�. In the following we show
that such a prediction is untenable and that the nonequilib-
rium term leads to new physics.

Let us start by employing naive power counting argu-
ments, based on equilibrium scaling, to decide whether � is a
relevant or an irrelevant perturbation, at the mean-field fixed
point and at the fluctuation one. In order to do that, we first
fix �=0 in Eq. �4�. If b�0, then the upper critical dimension
depends only on the repulsive part of the potential and is
dc�p�=2p / �2+ p� �25,26�, as shown in the Appendix. Now,
from dimensional analysis, ���=L−1+d/2. Upon evaluating it
at dc�p� one finds ���=L−2/�2+p� which, in terms of momenta,
has a positive dimension for any value of p. Therefore, the
KPZ nonlinearity is relevant at the mean-field equilibrium
wetting transition.

Relevancy at the fluctuating regime fixed point is proved
using the known one-dimensional scaling dimension of the
field �h�� t1/4�L1/2 at the fluctuation-dominated fixed point
�see the Appendix�. Then, it follows that ���=L−�d+1�, imply-
ing that � is strongly relevant in any space dimension. To be
rigorous we would need to include perturbative corrections
generated by the new nonlinear term proportional to �, but
even without computing these, one can say that it is very

FIG. 3. �Color online� Effective potentials in terms of n obtained
from the numerical integration of the interaction part of Eq. �10�.
Left and right panels correspond to, respectively, repulsive �b=1�
and attractive �b=−1� interactions. For both b we show results for
negative and positive � and different values of a corresponding to
the bound and unbound phases, as well as at coexistence. Note that
for ��0 ��0� the unbound phase corresponds to a minimum of n
at 0 ���. Transitions for attractive walls can be either first order or
continuous �directed percolation�.
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unlikely that such corrections reverse the strong lowest-order
relevancy of �. The relevancy of � is strongly supported by
the results of numerical simulations of the corresponding
Langevin equation as we will show next.

As in one-dimensional equilibrium interfaces, where p
=2 separates the mean-field and the fluctuation-dominated
regimes, it is easy to argue that in nonequilibrium the two
regimes are separated by p=1. From Eq. �4� in the absence
of noise, the mean-field velocity exponent at the critical
point, given by ����h�2�+ac=0, is obtained by integrating
�th�h−p−1 and found to be �h=1/ �p+2�. On the other hand,
when noise �fluctuations� is included, the �one-dimensional�
free KPZ equation has a roughening exponent of 1 /3 and,
therefore, a velocity proportional to t1/3 �9�. Which of these
contributions dominates? Clearly, if p�1, the wall-induced
velocity is larger and fluctuations give only a higher-order
correction �i.e., they are irrelevant�. By contrast, if p�1, the
effective repulsion generated by the wall �through suppres-
sion of the intrinsic interfacial roughness� controls the scal-
ing. Thus, in nonequilibrium long-ranged wetting, p=1 sepa-
rates the mean-field from the fluctuation-dominated regimes.

Transient effects, which are significant before the non-
equilibrium interface develops its full �asymptotic� time-
dependent roughness, may prevent the KPZ exponent �
=1/3 from being observed, leading to an effective exponent
�ef f �1/3. Furthermore, at short times, the interface is ex-
pected to grow with an Edwards-Wilkinson exponent �
=1/4, and therefore �ef f increases progressively from 1/4 to
its asymptotic KPZ value of 1 /3 in the long-time regime.
Comparing these values with the wall-induced velocity ex-
ponent 1 / �p+2�, we anticipate that for potentials with 1
� p�2 severe transient effects will occur before the
fluctuation-dominated scaling sets in. By contrast, for p�2
fluctuations dominate from the early stages of interfacial
growth.

B. Numerical results

In order to avoid numerical instabilities, typical of KPZ
direct numerical integration schemes �15�, we chose to study
the associated multiplicative noise, Eq. �10�, obtained after
performing a Cole-Hopf transformation. To solve Eq. �10�
efficiently we have used a recently proposed split-step
scheme for the integration of Langevin equations with non-
additive noise �17�. In this scheme, the equation under con-
sideration is discretized in space and time and separated into
two contributions: �i� the first includes deterministic terms
only and is integrated at each time step using a standard
integration scheme: Euler, Runge-Kutta, etc. �27� �here we
have chosen a simple Euler algorithm� and �ii� the output of
the first step is used as input to integrate �along the same
discrete time step� the second part which includes the noise
and, optionally, linear deterministic terms. This is done by
sampling the probability distribution—i.e., the solution of
the Fokker-Planck equation associated with this part of the
dynamics. In the case under study �noise proportional to the
field�, the second step can be carried out exactly. At each site,
one has to sample a log-normal distribution—i.e., the solu-
tion of the Fokker-Planck equation associated with �tn

=an+�n� �for more details see �28,17��. The two-step al-
gorithm for Eq. �10� is then implemented as follows. At each
site n=n�x , t�, we compute

n1�x,t� = n + dt
 bn

� ln�n��1+p + �discr
2 n�x,t�� , �11�

where the discretized Laplacian is defined by

�discr
2 n�x,t� =

n�x + �x,t� + n�x − �x,t� − 2n�x,t�
�x2 , �12�

with �x the space mesh and

n�x,t + �t� = n1�x,t�exp�a�t + ����t� , �13�

where � is a random variable extracted from a normal dis-
tribution with zero mean and unit variance. Note that the
linear deterministic term can be included in either the first or
second step or partially incorporated in both of them. For
systems with b�0, the stabilizing term, proportional to c,
has be to included.

We set �=1, �x=1/�0.1, and the time mesh �t=0.1 �note
that in this scheme �t can be taken larger than in the usual
integration algorithms �17��. In some simulations we used
different values of b, which by default was set to b= ±1. We
take as initial condition n�x , t=0�=3 if ��0 �recall that n
� �1,��� and n=0.5 if ��0 �n� �0,1��. Then, the dynamics
is iterated by employing the two-step integration algorithm at
each site and using parallel updating.

The numerical procedure is as follows. In order to deter-
mine the critical point for any set of parameters we take the
system size as large as possible and look for the separatrix
between upward-bending and downward-bending curves in
the order parameter �either n or m=1/n depending on the
case� versus t in a double-logarithmic plot. The asymptotic
value of this slope gives an estimation of �OP. Also, for the
same parameters, �h� grows as a power law with an exponent
�h �bending downward and upward in the bound and the
unbound phases, respectively�. Generally the order parameter
is more sensitive to control-parameter variations, providing
the most reliable way of determining the critical point. For
completeness and in order to check the validity of analytical
approximations, we measure the global interface width W at
the transition, which is expected to grow with the KPZ ex-
ponent 	W=1/3, in the regime where it is asymptotically
free.

Once the critical point is determined accurately we com-
pute 	OP and 	h by measuring the stationary values of the
order parameter and of �h� at different distances from it. A
complementary approach is based on finite-size scaling
analysis: the values of the order parameter and of �h�, at
saturation, are measured for a fixed value of a as a function
of system size. At the critical point these values scale with
exponents 	OP /
 and 	h /
, respectively. In addition, the
scaling of the saturation times for different system sizes al-
lows us to determine the dynamical exponent z. This stan-
dard finite-size scaling analysis is not always possible �see
below�, and in such cases z is measured through spreading-
like experiments. Finally, an alternative to spreading consists
in measuring the distribution of gaps between contact points
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at a given time. For small gaps this function decays with an
exponent z�OP, giving yet another estimate of z �29�.

The correlation length critical exponent 
 is obtained by
measuring the location of the effective critical point—i.e.,
the value of a for which the order-parameter falls below a
fixed threshold, say 10−3, as a function of system size:
ac,ef f�L��L−1/
. This exponent may also be determined indi-
rectly by employing scaling relations and using the value of
	OP /
 from finite-size scaling analysis and the value of 	OP
obtained from direct measurements. The results of these
measurements, in conjunction with the scaling laws, provide
an overcomplete estimation of the set of critical exponents,
which was also used to verify scaling relations.

Before discussing the differences between the various uni-
versality classes and regimes �i.e., different values of �, p,
and b� we first give an overview of the common features of
all simulations.

�i� Once the KPZ equation parameters �D ,� ,�� are fixed,
the location of the critical point is universal, meaning that it
does not depend on the details of the substrate—i.e., on the
values of b, c, and p. The critical point is determined by the
value of a where the free KPZ interface changes the sign of
its velocity, from positive—i.e., diverging to an unbound
state—to negative, becoming bound at the wall: ac
+����h�2�=0. As we consider two different values of �, +1
and −1, there are two critical points: ac��= ±1�
� �0.143668�3�.

�ii� At the critical point, the asymptotically unbound inter-
face is a free KPZ one, and thus z=3/2 and 	W=1/3. These
values were consistently checked in all simulations �see Figs.
4�a� and 4�b��.

�iii� A simple argument, originally given in �16�, predicts

=1 for all bounded KPZ interfaces. This prediction was
confirmed in all of our cases �see the inset of Fig. 4�a��.

1. Repulsive walls and ��0

We have to distinguish two regimes, depending on the
range of the attractive substrate—i.e., the value of p.

Mean-field regime. The theoretical discussion indicates
that for p�1, and any sign of �, a mean-field regime con-
trolled by the exponents �h=1/ �p+2� and 	h=3/ �2p+4� is
obtained. By changing variables in a naive way a stretched
exponential behavior for the order parameter is predicted.
Figure 5 �and Fig. 10, below� illustrates the confirmation of
these predictions �both for positive and negative ��.

Fluctuation regime: multiplicative noise 2. A strong-
fluctuation regime is predicted for systems with p�1, but as
argued above, severe transient effects are expected for 2
� p�1. We start with the analysis of the, a priori, simpler
p�2 subregime and offer simulation results for p
=2,2.5,3 ,4 ,7. In all cases the order parameter was found to
decay at criticality with an exponent �OP�0.229 while the
average height diverges with �h�1/3 �see Fig. 6, data
shown for p=2�. A standard finite-size scaling analysis can
be performed �see Fig. 6�, yielding 	OP /
=0.34�2� and
	h /
=0.46�2�.

These results, together with the previously reported gen-
eral ones, unambiguously place the fluctuation regime for

repulsive walls with positive � into the MN2 universality
class.

For systems with 1� p�2, where strong transients are
expected, after fixing b=1 and running simulations up to t
=106, continuously varying power-law exponents are found

FIG. 4. �Color online� Features common to all simulations. �a�
Roughness vs t gives 	W=0.33�1�; �inset� −ac�L� vs 103L−1 falls on
a straight line that yields 
�1 �data for �=−1 and p=2�. �b� Satu-
ration time vs system size leads to z=1.48�4� �data for �=1 and
p=2�.

FIG. 5. �Color online� Log-log plot of the time evolution at ac of
�h� �upper, red curves�, −ln�nOP� �middle, green curves�, and the
width w �lower, black curves�, in the mean-field regime p=0.5, for
��0 �main� and ��0 �inset�. Irrespective of the sign of �, �h� and
the roughness may be fitted to a power law with the predicted
exponents �h=1/ �p+2� and 	W=1/3, respectively. −ln�nOP� falls
on a straight line in a double logarithmic plot, confirming the
stretched-exponential behavior of the order parameter.
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�see Fig. 7�. We note, however, that these fits give effective
rather than asymptotic exponents. In fact, the change in the
effective exponents from the mean-field �wall-controlled� to
the fluctuation �intrinsic-interface� regime is expected to oc-
cur at shorter times when the effect of the substrate is less
pronounced, implying that reducing the value of b decreases
the crossover time. This was confirmed by simulating sys-
tems with b=0.1 and b=0.05 and observing a monotonic
decrease of the effective exponents that converge to the ex-
pected asymptotic value �OP�0.228, �h�1/3 �see inset �a�
of Fig. 7�, in line with the hypothesis that the transition be-
longs to the MN2 universality class.

In order to check that p=2 is the boundary between the
strong and weak transient subregimes, we have plotted in
Fig. 7, inset �b�, the average order parameter for systems
with the same initial condition, at time t=106, and different

values of p. This is a nonstationary value of the OP that is
strongly affected by transients. It is clear from the figure that
the behavior of the order parameter changes qualitatively at
p=2, corroborating the result that this value of p marks the
boundary between the subregimes with and without severe
transients.

2. Repulsive walls and ��0

Mean-field regime. In parallel with the positive � case, the
results of Fig. 5 �and Fig. 10, below� show that the theoreti-
cally predicted mean-field regime is clearly observed for sys-
tems with p�1.

Fluctuation regime: multiplicative noise 1. Again we have
to distinguish two subregimes, with and without severe tran-
sients, depending on whether p is larger than or smaller than
2. Simulations in the weak-transient regime were performed
for p=2 and 3. In both of these systems the order parameter
decays at criticality with an exponent �OP=1.19�1� while the
average height diverges with �h=0.33�1� �see Figs. 8�a� and
8�b�, data shown for p=2�. As was first pointed out in �29�,
finite-size scaling measurements are nontrivial in this case
due to the presence of two different characteristic times.
Namely, the correlation length reaches the size of the system
at times �Lz, while the interface typically detaches from the
wall at times �L1/�n. As the latter grows with a larger expo-
nent for MN1, the interface detaches from the wall before it
reaches the saturation regime for finite samples, rendering
the evaluation of 	OP /
 and z through standard finite-size
scaling methods problematic. An estimation of 	OP is pos-
sible by taking a large system size, L=217, and measuring the
order-parameter stationary-state value upon approaching ac.
We find 	OP=1.76�3� and 	h=0.51�3� �see Fig. 8�c��. z is
accessible through spreading experiments from an initial
condition with only one active �pinned� site. The measure-
ment of the mean-square deviation from the origin R2�t�

FIG. 6. �Color online� Log-log plot of the time evolution at ac of
�h� �dashed, black curve� and −log�nOP� �solid, red curve� in the
fluctuation regime �p=2� and for ��0. From the slopes of the
straight-line fits one finds �h=0.32�2� �upper curve� and �OP

=0.228�6� �lower curve�. Upper inset: finite-size scaling of �h�
yielding 	h /
=0.46�2�. From the lower inset one obtains 	OP /

=0.34�2�. These exponents agree with those of the MN2 universal-
ity class.

FIG. 7. �Color online� Main: order-parameter multiplied by the
expected power law t0.228. For systems with b=1, long transients
that depend on p are observed for systems with 1� p�2. Inset �a�:
the crossover times are reduced as b decreases; compare the upper,
red curve for b=0.05 with the lower, black one for b=1 �p=2�.
Inset �b�: order-parameter at t=106 vs p �b=1�. p=2 marks the
boundary of the strong transient region as illustrated by the different
behaviors observed above and below p=2.

FIG. 8. �Color online� Results for ��0 and p=2. �a� Log-log
plot of the time decay of the order-parameter. The straight line is a
guide to the eye and has a slope �OP=1.19�1�. �b� Log-log plot of
the average distance from the wall vs time, leading to �h=0.33�1�.
�c� The scaling of the saturation value of the order parameter yields
	OP=1.76�3�. �d� Log-log plot of the gap �between contact points�
distribution function at t=210. The initial slope gives z�OP

�1.75�10�.

KARDAR-PARISI-ZHANG INTERFACES BOUNDED BY¼ PHYSICAL REVIEW E 74, 011121 �2006�

011121-7



� t2/z gives z=1.52�5� �not shown�. Alternatively, one can
investigate the gap distribution function of the distances be-
tween neighboring contact points at a given time or, equiva-
lently, the average size of inactive islands in the n language
�29�. For small gaps this function decays with an exponent
z�OP, and we find z�OP=1.75�10� which leads to a value of z
compatible with 3/2 �see Fig. 8�d��.

These results, together with the general ones, place unam-
biguously this fluctuation regime for repulsive walls with
negative � into the MN1 universality class.

Again, for systems with 1� p�2, different effective ex-
ponents are obtained at a fixed maximum time for different
values of b �unity and smaller�, confirming the existence of
strong transients. Upon decreasing b, the influence of the
wall is reduced and a behavior compatible with the MN1
class is observed: �OP�1.19, �h�1/3, 	OP�1.76, and 	h
�0.5 �figure not shown�.

3. Attractive wall and ��0

The phase diagram, depicted in the left panel of Fig. 2, is
similar to that found for short-ranged interactions �5�. For a
fixed b, by varying a one of two transitions may occur de-
pending upon the initial interfacial state. Initially unbound
interfaces experience an unbinding-binding transition at ac
where the free-interface velocity inverts its sign �in full anal-
ogy with the previous case; see path 3 in Fig. 2�. On the
other hand, initially bound interfaces unbind at a different
nontrivial value of a, denoted a*�ac, inside the free-
interface unbound phase �path 4 in Fig. 2�a��. This transition
is analogous to the one observed for short-ranged forces and
is expected to be controlled by the unbinding of interface
sites trapped in the potential minimum. Bound sites �located
around the potential minimum� are identified with particles;
unbound sites are described by holes. The effective particle
dynamics is very similar to that of the contact process �30� �a
well-studied model known to be in the directed percolation
class�: an occupied site can become empty when a point is
detached and can induce also the binding of a neighboring
site. Furthermore, empty sites cannot become spontaneously
occupied in the absence of occupied �bound� neighboring
sites. Indeed, as soon as the interface is locally out of the
potential well, it is pulled away from it. This corresponds to
the absorbing state characteristic of the directed percolation
class. Note that the statistics of the average number of such
pseudoparticles is completely analogous to that of
�exp�−h��.

Before the depinning transition, typical triangular struc-
tures are observed, consisting of pinned sites �lying in the
potential well� and depinned sites being pulled from the sub-
strate. These triangular shapes �pyramidal in two dimen-
sions� are similar to those in the analogous short-ranged case
and are reminiscent of pyramidal mounds obtained in the
nonequilibrium growing of some interfaces, such as, for in-
stance, in the so-called Stranski-Krastanov effect �8�.

Our numerical results show that this transition is con-
trolled, as in the short-ranged case, by directed percolation
critical exponents �see Fig. 9�. In particular, we have deter-
mined 	OP /
=0.26�2� and �OP=0.161�2�, in excellent

agreement with the one-dimensional directed percolation
values.

Let us remark that, as the bound sites remain inside the
potential well and the dynamics controlling their final “es-
cape” is likely to be insensitive to the exponential or power-
law tails of the potential at large values of h, the parallel
between this behavior and the directed-percolation transition
for short-ranged forces is to be expected. Interestingly,
Ginelli et al. investigated a lattice model of a generalized
contact process with long-ranged interactions between the
edges of low-density segments and found a transition in the
directed percolation universality class for forces that decay
sufficiently slowly and a first-order transition otherwise �31�.
Clearly, in terms of h this translates into a long-ranged inter-
action between the vertices forming the triangle bases, and it
is reasonable to assume that, in turn, an effective long-ranged
attraction between the substrate and interface must be ob-
tained. In the light of these results it is reasonable to assume
that both short- and long-ranged interactions in similar mod-
els will be characterized by the same behavior below bw.

In the region between ac and a* one observes a generic
�broad� phase coexistence: the stationary solution is either
bound or unbound depending on the initial condition. Within
this region, the bound phase is characterized by some bound
sites trapped in the potential minimum and pseudounbound
regions separating them �5�. In full analogy with short-
ranged forces, close to the unbinding transition a�a* ini-
tially bound interfaces are stable owing to a mechanism that
eliminates local fluctuations into the unbound phase: once
formed, islands of the unbound phase rapidly transform into
triangular mounds of fixed slope, which subsequently shrink
from the edges.

4. Attractive wall and ��0

When ��0, the situation is rather similar to the one for
equilibrium and for nonequilibrium ���0� short-ranged sys-
tems. At the critical value ac where the free interface inverts
its velocity sign, there is a discontinuous unbinding-binding

FIG. 9. �Color online� Time decay of the order-parameter at the
critical point a=0.38448. From the slope in the log-log plot we find
�=0.161�2�. Inset: finite-size scaling of the order parameter. From
the slope in the log-log plot we estimate 	 /
=0.26�2�, in agreement
with directed percolation values.
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transition �path 3 in Fig. 2�. This value does not depend on
the value of p, b, or c �32�.

The multicritical point. Finally, for either sign of �, path 2
in Fig. 2 corresponds to a multicritical point analog to an
equilibrium critical wetting transition when the critical point
is approached at coexistence. Most likely, its location will
not coincide with its mean-field value b=0, but exhibits
some renormalization shift. The analysis of this multicritical
point will be considered elsewhere.

C. Discrete model

As a final check of universality issues, we simulated a
discrete interfacial model, known to belong to the KPZ class,
in the presence of a long-ranged substrate. The model is the
same as that studied in the context of short-ranged wetting in
�21�. Even if plagued with long transient effects �much larger
than in the short-ranged case�, all of the previously reported
phase diagrams and universality classes seem to be con-
firmed for the different types of walls �i.e., values of b and p�
and signs of the nonlinearity. Generally, the discrete model
provides slightly better results for the height variable as com-
pared with the continuum model and worse for the order
parameter.

Figure 10 displays the time growth of the mean separation
�h� in the mean-field-like regime �p�1�, for both positive
and negative �. Additionally, the ratios 	OP /
=0.251�2� and
�OP=0.156�2� were obtained for the directed percolation
transition, which compares favorably with the accepted esti-
mates 0.25208�5� and 0.1595 �33�.

V. DISCUSSION AND CONCLUSIONS

We have studied the unbinding of KPZ interfaces in the
presence of limiting substrates, interacting via long-ranged
potentials. This is the simplest model for interfacial effective
descriptions of wetting and in general, unbinding transitions,
of systems interacting through van der Waals forces under
nonequilibrium conditions.

We have presented the results of systematic analytical and
numerical studies of one-dimensional KPZ-like interfaces in
the presence of long-ranged forces, Eq. �4�, supporting the
following conclusions.

�i� Repulsive interactions drive a nonequilibrium com-
plete wetting transition for either sign of �. This transition
belongs to different universality classes depending on the
strength of the repulsion—i.e., on the value of p in Eq. �4�
and on the sign of �. For p�1 a mean-field-like regime is
observed in both cases, while for p�1 the fluctuation regime
obtains and the transition is in the multiplicative noise 1
�MN1� class for ��0 and in the multiplicative noise 2
�MN2� for ��0. Systems in the fluctuation regime exhibit
severe crossover effects for bounding potentials with 1� p
�2. This should be contrasted with the behavior of equilib-
rium systems where the value of p that separates the mean
field from the fluctuation regimes was found to be p=2.
More importantly, in nonequilibrium systems the symmetry
of the equilibrium wetting and drying transitions is broken
and the fluctuation regime of the corresponding equilibrium
wetting transitions is split into two different nonequilibrium
universality classes, MN1 and MN2, respectively. Our results
are collected in Table I.

�ii� For attractive walls—i.e., below the critical wetting
temperature—phase diagrams analogous to those of systems
with short-ranged forces have been found: generic phase co-
existence over a finite area limited by directed percolation
and first-order boundary lines for ��0 and a first-order
phase transition from an unbound to a bound interface for
��0. This transition should not be called “wetting” as the
interface detaches below the wetting transition temperature.

The unbinding transition at the critical wetting point
�which in the language of this paper corresponds to a multi-
critical point� requires a higher degree of fine-tuning and is
therefore expected to be more difficult to observe in experi-
mental situations. Its study is also more laborious and is
deferred to future work.

For more realistic two-dimensional interfaces, corre-
sponding to three-dimensional bulk systems, the situation is
expected to be very similar: all universality classes �mean-
field, multiplicative noise 1, multiplicative noise 2, and di-
rected percolation� are expected to be substituted by their
two-dimensional counterparts, with analogous phase dia-
grams and overall phenomenology.

We hope that the results described in this paper will help
to motivate an experimental study of wetting and unbinding
transitions under nonequilibrium situations. In these systems
one expects to find the rich phenomenology described here
and they can be used to test some of our quantitative predic-
tions, concerning the values of the exponents and the exis-
tence of various universality classes. Liquid crystals �6�,
molecular-beam epitaxial systems, such as GaAS �7�,
claimed to grow following KPZ scaling, or materials exhib-
iting Stranski-Krastanov instabilities �8� appear to be good
candidates that are at least worth investigating in this con-
text. Indeed, it is rather exciting to think that nonequilibrium
complete wetting exponents are measurable. This would be a
way of measuring the multiplicative noise critical exponents
and brings new hope of measuring directed percolation ex-
ponents in real systems �34�.

FIG. 10. �Color online� Time growth exponents �h in the mean-
field-like regime for �h� at the critical point, as results from the
discrete interfacial model. Blue circles �red squares� stand for �
�0 ��0� data points, and the solid line is the predicted curve
1/ �p+2�.
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APPENDIX: BRIEF REVIEW OF EQUILIBRIUM
WETTING

The action associated with Eq. �1� �26,35� �setting c=0� is

S�h, h̃� = ddxdt�h̃2 − h̃��th − �2h − a − bh−p−1�� , �A1�

where h̃ denotes, as usual, the response field �26,35�. If one
assumes first that the interaction term is the dominant one,
from naive dimensional analysis, imposing b to be dimen-
sionless at the upper critical dimension and equating the di-
mensions of the time derivative and the potential terms, one
obtains �h�MF=L2/�p+2� and consequently, within the mean
field, �h=1/ �p+2� since time scales naively as L2. The ex-
ponent values 	h=1/ �p+1� and 
= �p+2� / �2p+2� are then
obtained by matching �a�= �h�MF

−p−1 and by identifying L with
the characteristic correlation length, respectively.

On the other hand, when fluctuations �i.e., the noise term�
dominate, we require the noise amplitude to be dimension-

less at the upper critical dimension, which leads to �h̃�FL

=L�2+d�/2, and therefore �hh̃�=L−d, �h�FL=L�2−d�/2. From this,
proceeding as before, �h= �2−d� /4, 
=2/ �d+2�, and 	h

= �2−d� / �d+2�. These results �which may be obtained using
a number of different procedures �1,2,10,36–38�� are exact as

long as h and h̃ do not have anomalous dimensions, which
has been shown to be the case �36�.

The upper critical dimension is defined by �h�MF= �h�FL,
which yields dc�p�=2p / �2+ p�. Note that for d�dc�p� the
critical exponents depend on the details of the interaction
�i.e., on p� while for d�dc�p�, they depend only on d. In
particular, in one-dimensional systems, p=2 marks the tran-

sition between a mean-field regime and a fluctuation regime:
�i� If p�2, mean-field theory is valid, and consequently

�h=1/ �p+2�, 	h=1/ �p+1�, z=2, and 
=1/2.
�ii� For p�2, the substrate interaction decays fast enough

for the fluctuations to take over and the exponents become p
independent: �h=1/4, 	h=1/3, z=2, and 
=2/3.

Note that at the limiting value p=2 the exponents change
continuously from the mean field to the fluctuation regime. It
is also remarkable that the fluctuation regime exponents co-
incide with those of short-ranged equilibrium wetting �char-
acterized by exponential bounding potentials �1��.

Until now we have considered the scaling properties of
�h�, but as was mentioned earlier the number of dry sites or
contact points between the interface and the substrate, mea-
sured by �exp�−h��, is known to exhibit interesting scaling
behavior in wetting problems �19�.

�i� For p�2 simple mean-field scaling holds and the h
distribution is a Gaussian detaching from the wall at a speed
controlled by its mean value. As the interface is well de-
scribed by its average position, it is expected that

�e−h� � e−�h� � e−At1/�p+2�
, �A2�

yielding a stretched exponential decay.
�ii� For p�2, �a+b exp�−h��=0 holds in the stationary

state, and therefore �n��a; using simple scaling, �exp�−h��
= �a�= ��th�� t1/4−1, giving �exp�−h��� t−3/4. This result can
be derived in a number of ways, including explicit calcula-
tions for discrete models in this class �39�, and remains valid
for long-ranged potentials in the fluctuation regime. Note the
difference between this fluctuation-induced power-law be-
havior and the previously reported stretched exponential be-
havior in the mean-field regime.

For attractive walls, b�0, a positive value of c is required
to ensure the impenetrability of the substrate �see Fig. 1�. In
this case it is easy to argue that the interface jumps discon-
tinuously from a bound state �for a�0�, localized at the
minimum of V�h�, to an unbound state �for a�0� through a
first-order phase transition. Clearly, in terms of the contact
points �exp�−h��, the transition is also discontinuous.

TABLE I. Summary of the critical exponents in the mean-field �p�1� and the fluctuation �p�1� regimes
for nonequilibrium, complete wetting transitions with long-ranged forces. To facilitate the comparison, the
exponents for the MN1 and MN2 universality classes are also included �p=��. n.a., not applicable.

Exponent

��0 ��0

p�1 p�1 p=� �5� p�1 p�1 p=� �20�

�OP , �n�� t−�OP Stretched exp. 1.19�1� 1.18 Stretched exp. 0.228�6� 0.229�5�
	OP , �n���	OP n.a. 1.76�3� 1.78 n.a. 0.34�2�a 3.335�5�

�h , �t�� t�h 1/ �p+2� 0.34�1� 0.33 1/ �p+2� 0.32�2� 0.323�10�
	h , �h���−	h 3/2�p+2�a 0.51�3� 0.5 3/2�p+2�a 0.46�2�a 0.48�3�

z ,�� t1/z 3/2b 1.52�5� 3/2 3/2b 1.48�4� 1.46�5�
	W ,W� t	W 1/3b 0.33�1� 1/3b 1 /3b


x ,���a−
x 1b 1 1 1b 1b 0.99�3�
aExponent from finite-size analysis or scaling relations.
bEstimated value from short simulations.
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